Photography Alan Beeson

Just when you thought we’d exhausted all of the possibilities for MIDI messages, we found some
more. Yeah, life’s tough but communication is important, so listen up!
Text by Norman Weinberg.

KAY, SO YOU'RE convinced.

Tomorrow you're off to the local

music store to get MIDlfied. The

problem is that you don't have all

the money in the world, but still
want to get a hip system. If you're looking
for a sound generator that will give you
flexibility, a wide variety of sounds, and few
headaches, then ‘multitimbral’ is the way to
go.

Timbre is a musical word which means
sound color, and multitimbral is a term
which is used to describe a synth’s ability to
play more than one timbre at a time. All
drum machines can be thought of as
multitimbral because ‘they are capable of
playing several different sounds at the same

time. When you are playing a bass drum,

snare drum, and high hat, along with a few
toms, you are multitimbral. Some keyboard
synths can be multitimbral by using two
different techniques. One might be to use
a ‘split keyboard’, where you could have a
bass guitar sound on the lower octaves and
a flute sound on the upper keys, for
example - although any two timbres can

62

be combined. The second method of
getting different sounds at one time
involves a special use of MIDI Mode Four,

Of course you remember from earlier
articles (you do remember, don’t you?)
that Mode Four is Omni Off/Mono. In
other words, the synth will be listening to a
single MIDI channel and responding in a
monophonic manner (one note at a time).
However, an instrument in Mode Four is
not limited to listening on just one MIDI
channel. It can respond monophonically to
several different MIDI channels, and of
course each MIDI channel would be used
to access a different timbre to make it -
you guessed it — multitimbral. Not only
that, but there is an extension to Mode
Four, called ‘Multimode’, which enables an
instrument to respond polyphonically
(with different timbres) to several different
MIDI channels at once, thus making it
multitimbral.

As an example, let’s look at one of the
least expensive MIDI synthesizers on the
market, the Casio CZIOl. Sold by mail
order for under $300, it has an impressive

array of features. While in Mode Four, it
can read four different MIDI channels at
one time with each channel having its own
different timbre. Each MIDI channel is
monophonic, but you can play four timbres
at the same time. This mode makes the
synth act as if it were four individual
monophonic instruments, MIDI channel 3
could be playing an electric bass sound
while channel 4 plays a woodblock, channel
5 could play an organ sound, and channel 6
might be an explosion effect. Use your
trigger to MIDI interface so that you send
the pads to different MIDI channels and it’s
all under control. With the CZIOI, you
must keep one thing in mind when dealing
with this special use of Mode Four: the
MIDI channel numbers that you're using
must be in consecutive order. You can't
have it read channels 4,5,6, and 10 for
example.

E-mu Systems’ E-Max sampler is a good
example of Multimode - only E-mu calls it
‘Super Mode’. While in Super Mode, the E-
Max will read any or all sixteen different
MIDI channels and assign a different preset

RHYTHM AUGUST 1988

(set of timbres) to each one. With this
instrument, each channel can also respond
in a polyphonic manner! The Ensoniq
ESQI, the Yamaha TX8IZ, and the Roland
MT32 all have similar abilities.

Channel Mode Messages

WHILE WE ARE on the subject of Mode
Four, it might be a good time to tell you
about the other Channel Mode Messages
that are defined in the MIDI specification.
Last time, we discussed all the Channel
Voice Messages including Control Change
commands. The Channel Mode Messages
are a subset of the Control Change
message. |f you remember, the Control
Change status byte was 10l followed by
the channel number. The first data byte
that follows this status command is going
to determine which of the Channel Mode
Messages are being sent. The second data
byte either presents more information or is
a ‘dummy’ byte.

Local Control is specified by the data
byte of 122 (there are no controllers
numbered from 122 to 127 because these
controller numbers are reserved for the
mode messages). Local control is aptly
named, because if local control is turned
off, then the microprocessor inside the
MIDI unit will ignore messages coming
from its own keyboard or pads. This is
pretty worthless on a drum machine or a
sound generator, but it may come in handy
if you own a keyboard synthesizer and
you're using it to program a drum machine.
With local control off, the synth will
continue to send MIDI messages, but will
not make any sounds of its own. With local
control turned on, you would be able to
hear both the drum machine and the synth
sounds at the same time.

Perhaps one of the most valuable mode
messages is 123, All Notes Off. If you've
ever had a problem with stuck notes, then
you can appreciate this message. When a
synth receives an all notes off command, it
will stop playing any notes that are
currently sounding. If you use a sequencer,
whenever you hit the ‘stop’ button, the
sequencer will typically send one of these
commands. However, please note that not
all MIDI sound sources will respond to an
All Notes Off message.

The next four mode messages
determine the MIDI modes themselves. If
the first data byte is 124 (binary code of
Olll 1100), then the receiving unit will
change to Omni Off. A data byte of 125
(01 1101) indicates Omni On, 126 (0lll

lll0) is Mono On, and a data byte of 127
(oI 1) is Poly On. Remember, that
Omni is either on or off, but Poly On and
Mono On are mutually exclusive (turning
one on turns the other off). Example
Number | shows all of the different
Channel Mode Messages that are defined
by the MIDI specification.

RHYTHM AUGUST 1988

Example No. 1

Channel Mode Messages

Status First Data Second Data
Byte Byte Hyte
Program Change Local Conrol On [/ Off
1100 nnnn 0111 1010 Value
Program Change All Notes O Dummy Byle
1100 nnnn 0111 1011 QOO0 0000
Program Change Cmni Off Dummy Byte
1100 nnnn 0L11 1100 OO0 (OG0
Program Change Omni On Dummy Byvte
1100 nnnn 0111 1101 0000 G000
Program Change Mono On Mumher aof
1100 nnnn 0111 1110 Mono Channels
Program Change Poly On Dummy Byte
1100 nnnn 01111111 Q000 0000
“nnnn” represents the four bits that determine the MIDI channel,
Dummy bytes are required so that cach complete MIDI made
message is three byvtes long,

System Messages

IN ADDITION TO messages that are sent
over specific MIDI channels, there is
another classification of messages that are
intended for all MIDI devices connected in
the system. They are called System
Messages and are received by every piece
of gear no matter what MIDI channel they
are listening to. Because these commands
are not channel specific, they all begin with
the binary digits of Illl. The next four bits
in the status byte determine the actual
system message type.

The first class that we will discuss is
called System Common Messages. There
are five different system common messages
currently defined by the MIDI specification.

The Quarter Frame Message (Illl 000I)
is used only when devices are running
under the newly defined MIDI Time Code
(this is pretty advanced stuff, so hang on
until next month when we discuss different
types of timing and synchronization
systems). Unless you have a computer and
deal with syncing music and sound effects
to video, you really don’t have much use
for this message.

More important to drummers is the
Song Position Pointer (Il 0010). Song
position pointers are now used in almost
every model and brand of drum machine.
They perform a simple task which is a
gigantic time saver. They locate the exact
point within a song down to each individual
sixteenth note in over a thousand different
measures,

To see how song position pointers are
used, imagine that you are programming an
eighty measure song, which uses two MIDI
drum machines synced together. Without
song position pointers, if you want to
change something during the last four
measures, you must start both machines at
the beginning of the song. You have no
choice, but to sit back and have a cup of
coffee until the last few measures come up.
With song position pointers, one MIDI
drum machine can tell the other exactly
where to begin anywhere in the song, thus
saving you many hours of hard work and,
perhaps, caffeine poisoning. Just like the
pitch wheel change messages, a song

position pointer makes use of high
resolution data by combining the two data
bytes to indicate over 16,000 different
positions.

Song Select is another important system
common message for drummers. If you
often use a computer to control your drum
machine, then this message will tell the
drum machine to call up a particular song
and get it ready to play. Song select
messages can indicate any of 128 different
songs.

Tune Request (llll 0110) was primarily
designed for analog synthesizers.
Whenever a device receives this command,
it will tune itself to some sort of internal
reference (most often A=440 cps). Now
that almost everything on the market is
digital, and instruments don’t drift in and
out of tune as much as they used to, this
message is all but obsolete. The last system
common message is called the End of
Exclusive and is discussed below. See
Example Number 2 for a chart of all the
different System Common Messages.

Example No, 2

System Common Messages

Status First Data Second Data
Byte __Byte Byte
Quarter Frame Message Type None
1111 0001 Time Frame
Song Position Pointer LS MSH
1111 0010 Value Value
Song Select Song None
1111 0011 Number
Tune Request MNone None
1111 0110
EOX None None |

11110111

System Exclusive Messages

ORIGINALLY, SYSTEM EXCLUSIVE
messages were designed to allow a
musician access to certain controls within a
synthesizer that might not be defined by
the MIDI specification. Primarily, system
exclusive messages deal with non-
performance aspects of music, such as
programming the sounds that the synth
will perform. As an example, consider a
synthesizer that has an envelope generator
controlling its amplitude. The MIDI
specification says nothing about individual
envelope settings. Even though the
envelope generator is a type of controller,
it is not defined as a controller by MIDI.
Why not, you ask? Because different synths
have different types of envelope generators
and while some may have only four stages
called attack, decay, sustain, and release,
others may have eight or more.
Manufacturers and musicians didn’t want
to standardize the number of stages an
envelope should have. If every aspect and
feature of a synthesizer was made standard,
all instruments would sound the same!
With system exclusive messages, each
instrument’s individual abilities can still be
accessed through MIDI.

System exclusive messages always begin

63

the same way. They start with a command
of Illl 0000 as the status byte. After this
status byte comes a manufacturer’s 1D
number. The purpose of the status byte is
to tell all MIDI devices connected in the
system to get ready for some system
exclusive information. The manufacturer’s
ID identifies a particular brand of device,
and maybe even a particular model within a
company’s product line. Manufacturer 1D
numbers are assigned by the MMA (MIDI
Manufacturers Association) and can be
requested by any company that builds
i1IDI devices. Some examples are: 27 for
equipment made by Baldwin, 7| for gear by
Akai, 67 for Yamaha equipment, and 68 for
Casio. Once this ID number has been sent,
only those MIDI devices that recognize
their own number will continue listening to
the rest of the message. Any other brand
or model of instrument in the system will
ignore all the messages that follow.

Next in the system exclusive format

comes the data itself. This data stream can
be anything that the manufacturer wants it
to be. It can include everything from the
various envelope settings to the tuning of a
bass drum sound. The data stream can be
very short or extremely long, depending
on the amount and type of information
that is being communicated. After the data
is transmitted, system exclusive messages
all end in the same way, with the system
command message mentioned earlier
called End of Exclusive (often abbreviated
as EOX). The EOX byte is Il Olll and
tells all devices connected to the system
that they should start paying attention
again. :
How can you use system exclusive
commands with your MIDI setup! Have
you ever seen a visual editor for a
synthesizer? Visual editors use the power
and large screen of a computer to program
the synthesizer by ‘remote control’. Visual
editors let the user see all the different
programmable values at the same time.
Instead of programming the synth from the
front panel and pressing nine zillion
different buttons to change a particular
parameter, the computer can do it for you.
When a value is changed on the
computer's screen, the proper system
exclusive commands are sent over MIDI by
the computer, and the new values are
received by the synth. There are visual
editors for most popular samplers,
synthesizers, and tone generators. While
there are very few visual editors for drum
machines, let's take a lock at how a
computer programmer might use system
exclusive commands to write an editing
program for the Yamaha RXIl drum
machine.

Example Number 3 shows the binary
codes that would change the ‘Total
Volume’ control of the RXII (listening to
MIDI channel one) to the level of 52. The
entire message starts off with the system

64

Example No. 3

RX11 System Exclusive Messages

MIDI Binary Description
Number Code
241 P111 0000 System Exclusive
Status Byte
o7 0100 0011 danulacturer's
16 Q001 0000 Sub Status and
MIDI Channel Number
8 QOO0 001 1 Farameter Group and
Sub Group Number
15 0111 0011 Parameter Number
52 G011 O Lon Data Value of 52
248 11110111 EOX Message

exclusive status byte. Next is the data byte
that says ‘“this message is intended for
Yamaha gear only” (or “this Bud’s for
you . . .” sorry Norman, | couldn’t resist -
MM). The following data byte specifies the
model of the instrument, and a MIDI
channel number. It means “Okay, Yamaha
stuff; if you are an RXI| listening on MIDI
channel |, stay tuned. If you're not, then
ignore the rest of this message.” Being able
to specify a MIDI channel can come in
handy if you have two or more RXII units
and want to send a message to only one of
them. To single one out for the message,
simply have them listen to two different
channels.

The next data byte is a parameter group
and sub group number. This particular set
of digits is required when working with the
RXII. The fifth byte that moves down the
cable is the parameter number. Yamaha
has defined the number 115 to mean the
total volume parameter. The next byte is
really the one that sets the value of the
parameter (in the case of the example, the
total volume). The complete message is
over when the EOX command is sent and
received over the MIDI cable. Even though
II5 specifies the ‘Total Volume' on the
RXII, other devices made by Yamaha may
use different parameter numbers to
indicate volume. Keep in mind that system
exclusive messages will all be different for
each instrument. When you want to really
get down into the system exclusive codes,
it's time to read the manual!

System Real Time Messages

AS YOUR MIDI system grows, timing will
become more and more important.
Synchronization comes in many different
flavors. There are two types of
synchronization available in the MIDI
specification. One type, called MIDI sync,
makes extensive use of still another
classification of system messages called
System Real-Time Messages. They work in
the domain of ‘real-time’ (time when the
MIDI system is up and running as opposed
to ‘stopped-time’). Since these commands
are included in the MIDI data stream, they
are designed to be as short as possible. All
real-time commands consist of a single
status byte without any data bytes tagging
along. This keeps things happening as fast
as possible.

The Start (IlIl 1010) message is self-
explanatory. If you have one drum machine
controlling another, then pushing the start
button on the master unit will cause the
slave to play from the beginning of the
sequence or song. Stop (Il 1100) is
another real-time message that can be
conveyed through MIDI.

The Continue message (Illl I011) is very
similar to the start command, with one
difference. While the start message will ask
the slave device to go back to the
beginning, this message will ask the slave
device to continue playing from where it
left off. If a device does not have this
command implemented in its controls, it
will always have to start back at the
beginning of a song.

Active Sensing is an optional message. It
has the binary structure of Illl 1110, and is
used by some companies (notably
Yamaha) to insure that all the MIDI
connections are constantly in proper
working order. An instrument that is
programmed to read active sensing
commands will wait until the first such
message is received. Once it receives this
message the first time, it will expect
another one every 300 milliseconds. If that
time period passes, and another active
sensing message isn’t picked up, the slave
device will turn off all its notes and return
to normal operation. This can save a lot of
headaches when someone trips over your
MIDI cable and the DIN plug is yanked out
of the machine.

Another real-time message is System
Reset (Il 1), This command will ask
every device connected in the MIDI system
to reset themselves to their normal default
(or at least power up) conditions. Be very
careful how you use this command, or you
could find yourself reprogramming much of
the information you have entered.
(Because of this, very few products
implement System Reset.)

The most important real-time message
is called the Timing Clock (Illl 0000). This
message keeps all devices in the system in
sync with each other. The timing message
is sent twenty-four times every quarter
note. It doesn’t matter what tempo your
drum machine is playing or what meter you
use for your song, there will always be 24
of these messages for every quarter. If your
tempo is quarter note equals 60, then
there will be 1440 MIDI clocks moving
down the cable every second. If your
tempo is quarter equals 300, then there
will be 7200 MIDI clocks per minute or 120
every second.

Next month, we'll deal with the other
timing system included in MIDI, the MIDI
Time Code. We'll discuss other types of
synchronization such as SMPTE Time
Code, FSK, and pulse clocks. We'll also
take a long hard look at what sequencers
are and what they do. So stay tuned — MIDI
channel six, mode three. ®

RHYTHM AUGUST 1988

